Fano's Last Fano

Marco Andreatta - Roberto Pignatelli

Dipartimento di Matematica
Università di Trento

Bucharest - 2023

Advertising in Rumenia

Fano's Last Fano
Marco Andreatta - Roberto Pignatelli

Rumenia ...

Introduction
Classification
Fano's
Construction
Modern Set-Up

Marco Andreatta

LA FORMA DELLE COSE

L'alfabeto della geometria RACCONTARE LA MATEMATICA

MARCO ANDREATTA FORMA LUCRURILOR
ALFABETUL GEOMETRIEI
HUMANITAS

Introduction

Rumenia

Introduction

Classification
Fano's
Construction
Modern Set-Up

The work of Gino Fano, in particular the idea of the varieties denoted by his name, had a terrific impact on the development of modern projective geometry.

Rumenia ..

The work of Gino Fano, in particular the idea of the varieties denoted by his name, had a terrific impact on the development of modern projective geometry.

A large number of mathematicians, often organized in counterposed schools, in the last 50 years, starting from Fano's results, constructed theories which are among the most spectacular achievements of contemporary mathematics.

Notation

In the lecture we consider normal projective varieties X defined over \mathbb{C}. If n is the dimension of X we sometime call X and n-fold; we denote by K_{X} the canonical sheaf.
We assume to have good singularities such that K_{X}, or a multiple of it, is a line bundle (a Cartier divisor).

Fano's 3folds

Pignatelli

Rumenia

Let $X \subset \mathbb{P}^{N}$ be a projective 3-fold such that for general hyperplanes H_{1}, H_{2} the curve $\Gamma:=X \cap H_{1} \cap H_{2}$ is canonically embedded (i.e. K_{Γ} embeds Γ).

Fano called them
Varietà algebriche a tre dimensioni a curve sezioni canoniche.

Fano's 3folds

Rumenia ...

Let $X \subset \mathbb{P}^{N}$ be a projective 3-fold such that for general hyperplanes H_{1}, H_{2} the curve $\Gamma:=X \cap H_{1} \cap H_{2}$ is canonically embedded (i.e. K_{Γ} embeds Γ).

Fano called them
Varietà algebriche a tre dimensioni a curve sezioni canoniche.
This is the case if and only if the the linear system, $\left.\mid-K_{X}\right]$, embeds X as a 3 -fold of degree $2 g-2$ into a projective space of dimension $g+1$, $X:=X_{3}^{2 g-2} \subset \mathbb{P}^{g+1}$, where $g=g(\Gamma)$ is the genus of Γ.

Fano's 3folds

Rumenia ...

Let $X \subset \mathbb{P}^{N}$ be a projective 3-fold such that for general hyperplanes H_{1}, H_{2} the curve $\Gamma:=X \cap H_{1} \cap H_{2}$ is canonically embedded (i.e. K_{Γ} embeds Γ).

Fano called them
Varietà algebriche a tre dimensioni a curve sezioni canoniche.
This is the case if and only if the the linear system, $\left.\mid-K_{X}\right]$, embeds X as a 3 -fold of degree $2 g-2$ into a projective space of dimension $g+1$, $X:=X_{3}^{2 g-2} \subset \mathbb{P}^{g+1}$, where $g=g(\Gamma)$ is the genus of Γ.
Example: the quartic 3-fold in $\mathbb{P}^{4}, X_{3}^{4} \subset \mathbb{P}^{4}$.

Fano's 3folds

Rumenia ...

Fano noticed that for such varieties the following invariants are zero:
■ $P_{m}(X)=h^{0}\left(X, m K_{X}\right)=0$ for all $m \geq 1$ (m-th plurigenera) (we say that X has Kodaira dimension minus infinity: $k(X)=-\infty$)

- $h^{i}\left(\mathcal{O}_{X}\right)=0$ for all positive i (in particular the irregularity $q(X)=h^{1}\left(X, \mathcal{O}_{X}\right)$ is zero).

Varieties satisfying these two conditions were called by him Varietà algebriche a tre dimensioni aventi tutti i generi nulli.

Non rational 3-folds

Fano had the insight that among this class of varieties there are varieties which are non-rational, in spite of the fact that they have all plurigenera and irregularity equal to zero; they would provide a counterexample to a Castelnuovo type rationality criteria for 3-folds. None of Fano's attempts to prove non-rationality has been considered acceptable.

Non rational 3-folds

Fano had the insight that among this class of varieties there are varieties which are non-rational, in spite of the fact that they have all plurigenera and irregularity equal to zero; they would provide a counterexample to a Castelnuovo type rationality criteria for 3-folds.
None of Fano's attempts to prove non-rationality has been considered acceptable.

The first proof of the non rationality of all $X_{3}^{4} \subset \mathbb{P}^{4}$ is the celebrated Iskovskikh and Manin's. B. Segre has constructed some unirational $X_{3}^{4} \subset \mathbb{P}^{4}$, therefore they represents counterexamples to Lüroth problem in dimension 3 (as well as to a Castelnuovo type rationality criteria).

Fano had the insight that among this class of varieties there are varieties which are non-rational, in spite of the fact that they have all plurigenera and irregularity equal to zero; they would provide a counterexample to a Castelnuovo type rationality criteria for 3-folds.
None of Fano's attempts to prove non-rationality has been considered acceptable.

The first proof of the non rationality of all $X_{3}^{4} \subset \mathbb{P}^{4}$ is the celebrated Iskovskikh and Manin's. B. Segre has constructed some unirational $X_{3}^{4} \subset \mathbb{P}^{4}$, therefore they represents counterexamples to Lüroth problem in dimension 3 (as well as to a Castelnuovo type rationality criteria).

In the same period Clemens and Griffiths proved the non-rationality of the cubic 3 -fold in \mathbb{P}^{4}.
Both papers gave rise to subsequent deep results and theories aimed to determine the rationality or not of Fano varieties.

Fano Varieties

Definition

A smooth projective variety X is called a Fano manifold if $-K_{X}$ is ample. The index of X is defined as the greatest integer which divides $-K_{X}$, that is the greatest r such that $-K_{X}=r L$ for a line bundle L.
If $\operatorname{Pic}(X)=\mathbb{Z}$ then X is called a Fano manifold of the first species or a prime Fano manifold.

Fano Varieties

Fano's Last Fano

Definition

A smooth projective variety X is called a Fano manifold if $-K_{X}$ is ample. The index of X is defined as the greatest integer which divides $-K_{X}$, that is the greatest r such that $-K_{X}=r L$ for a line bundle L.
If $\operatorname{Pic}(X)=\mathbb{Z}$ then X is called a Fano manifold of the first species or a prime Fano manifold.

Proposition

Let $X \subset \mathbb{P}^{N}$ be a projective n-fold and let $H:=\mathcal{O}_{\mathbb{P}^{N}}(1)_{\mid X}$ be the hyperplane bundle. Assume that for general hyperplanes $H_{1}, H_{2}, \ldots, H_{n-1} \in|H|$ the curve $\Gamma:=H_{1} \cap H_{2} \cap \ldots \cap H_{n-1}$ is a canonically embedded curve of genus g. Then the anticanonical bundle is linearly equivalent to $(n-2)$ times the hyperplane bundle, i.e. $-K_{X}=(n-2) H$.

Classification and MMP

Fano's Last Fano

Rumenia

Fano Varieties are the building blocks (atoms) of the classification of projective varieties: the Minimal Model Program (MMP), a program aimed to classify projective varieties.

Classification and MMP

Fano's Last Fano

Fano Varieties are the building blocks (atoms) of the classification of projective varieties: the Minimal Model Program (MMP), a program aimed to classify projective varieties.

- S. Mori: Fields Medalist in 1990 for the proof of Hartshorne's conjecture and his work on the classification of three-dimensional algebraic varieties

Classification and MMP

Fano's Last Fan

Fano Varieties are the building blocks (atoms) of the classification of projective varieties: the Minimal Model Program (MMP), a program aimed to classify projective varieties.

- S. Mori: Fields Medalist in 1990 for the proof of Hartshorne's conjecture and his work on the classification of three-dimensional algebraic varieties
- C. Hacon and J. McKernan: Breakthrough Prize in Mathematics 2018 for transformational contributions to birational algebraic geometry, especially to the minimal model program in all dimensions Classification and MMP

Fano Varieties are the building blocks (atoms) of the classification of projective varieties: the Minimal Model Program (MMP), a program aimed to classify projective varieties.

- S. Mori: Fields Medalist in 1990 for the proof of Hartshorne's conjecture and his work on the classification of three-dimensional algebraic varieties
- C. Hacon and J. McKernan: Breakthrough Prize in Mathematics 2018 for transformational contributions to birational algebraic geometry, especially to the minimal model program in all dimensions
-C. Birkhar : Fields Medalist in 2018 for the proof of the boundedness of Fano varieties and for contributions to the minimal model program.

\% \%ig
 Classification of Fano 3-folds

Fano's Last Fano

Marco Andreatta - Roberto

Pignatelli

Rumenia

Introduction
Classification
Fano's
Construction
Modern Set-E
G. Fano: a biregular classification of Fano manifolds in dimension three. His work contains serious lacunes.

Classification of Fano 3-folds

Fano's Last Fano

Marco Andreatta - Roberto Pignatelli
G. Fano: a biregular classification of Fano manifolds in dimension three. His work contains serious lacunes.
V.A. Iskovskikh (1978-1980): obtained a complete classification of prime Fano 3-folds of the principal series. He used the Fano's method of double projection from a line; the existence of a line, a delicate result proved only later by Shokurov.
He proved that $3 \leq g \leq 12$ and $g \neq 11$ and for every such g he gave a satisfactory description of the associated Fano variety.
$X_{3}^{22} \subset \mathbb{P}^{13}$ (omitted by Fano and later by Roth): the double projection from a line, $\pi_{2 Z}: X_{3}^{22} \cdots>W \subset \mathbb{P}^{6}$, goes into W, a Fano 3-fold of index 2, degree $5 \operatorname{Pic}(W)=\mathbb{Z}$ and one singular point. X_{3}^{22} is rational.

Classification of Fano 3-folds

G. Fano: a biregular classification of Fano manifolds in dimension three. His work contains serious lacunes.
V.A. Iskovskikh (1978-1980): obtained a complete classification of prime Fano 3-folds of the principal series. He used the Fano's method of double projection from a line; the existence of a line, a delicate result proved only later by Shokurov.
He proved that $3 \leq g \leq 12$ and $g \neq 11$ and for every such g he gave a satisfactory description of the associated Fano variety.
$X_{3}^{22} \subset \mathbb{P}^{13}$ (omitted by Fano and later by Roth): the double projection from a line, $\pi_{2 Z}: X_{3}^{22} \cdots>W \subset \mathbb{P}^{6}$, goes into W, a Fano 3-fold of index 2, degree $5, \operatorname{Pic}(W)=\mathbb{Z}$ and one singular point. X_{3}^{22} is rational.
S. Mukai (1987): a new method to classify Fano-Iskovskikh 3-folds based on vector bundle constructions. A new construction of $X_{3}^{22} \subset \mathbb{P}^{13}$ (Mukai-Umemura 1983).

Fano's Last Fano
G. Fano: a biregular classification of Fano manifolds in dimension three. His work contains serious lacunes.
V.A. Iskovskikh (1978-1980): obtained a complete classification of prime Fano 3-folds of the principal series. He used the Fano's method of double projection from a line; the existence of a line, a delicate result proved only later by Shokurov.
He proved that $3 \leq g \leq 12$ and $g \neq 11$ and for every such g he gave a satisfactory description of the associated Fano variety.
$X_{3}^{22} \subset \mathbb{P}^{13}$ (omitted by Fano and later by Roth): the double projection from a line, $\pi_{2 Z}: X_{3}^{22} \cdots>W \subset \mathbb{P}^{6}$, goes into W, a Fano 3-fold of index 2, degree $5, \operatorname{Pic}(W)=\mathbb{Z}$ and one singular point. X_{3}^{22} is rational.
S. Mukai (1987): a new method to classify Fano-Iskovskikh 3-folds based on vector bundle constructions. A new construction of $X_{3}^{22} \subset \mathbb{P}^{13}$ (Mukai-Umemura 1983).
S. Mori and S. Mukai (1981): classified Fano 3-fold with $\rho(X) \geq 2$. At the Fano Conference in Torino (2002) they announced they have omitted the blow-up of $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ along a curve of tridegree $(1,1,3)$.

\% \%
 Classification of Fano n-folds

Fano's Last Fano

Rumenia

Introduction
Classification
A classification of Fano manifolds of higher dimension is an Herculean task which however is finite.

\% \% 항․
 Classification of Fano n-folds

Fano's Last Fano

Rumenia

Introduction

A classification of Fano manifolds of higher dimension is an Herculean task which however is finite.
Kollár-Miyaoka-Mori: Fano manifolds of a given dimension form a bounded family. The same has been proved recently by C. Birkhar in the singular case.

A classification of Fano manifolds of higher dimension is an Herculean task which however is finite.
Kollár-Miyaoka-Mori: Fano manifolds of a given dimension form a bounded family. The same has been proved recently by C. Birkhar in the singular case.
Fano manifold of index $r \geq(n-2)=\operatorname{dim} X-2$ were classified: Kobayashi and Ochiai (n, projective spaces and quadrics), T. Fujita ($n-1$, del Pezzo manifolds)
S. Mukai ($n-2$, under the assumption that H has an effective smooth member, this was proved later by M. Mella)

Classification of Fano n-folds

A classification of Fano manifolds of higher dimension is an Herculean task which however is finite.
Kollár-Miyaoka-Mori: Fano manifolds of a given dimension form a bounded family. The same has been proved recently by C. Birkhar in the singular case.
Fano manifold of index $r \geq(n-2)=\operatorname{dim} X-2$ were classified: Kobayashi and Ochiai (n, projective spaces and quadrics), T. Fujita ($n-1$, del Pezzo manifolds)
S. Mukai ($n-2$, under the assumption that H has an effective smooth member, this was proved later by M. Mella)
Several projects aiming to classify singular Fano varieties in dimension 3,4 and 5 . It is estimated that 500 million shapes can be defined algebraically in four dimensions, and a few thousand more in the fifth.

Relative Case

Definition

Let $f: X \rightarrow Y$ be a contraction (divisorial, small or of fiber type), X with mild singularities; f is called a Fano-Mori contraction if $-K_{X}$ is f-ample.
If $\operatorname{Pic}(X / Y)=\mathbb{Z}$ then X is called a elementary Fano-Mori contraction; if $-K_{X} \sim_{f} r L, r$ is called the nef value of f.

Relative Case

Definition

Let $f: X \rightarrow Y$ be a contraction (divisorial, small or of fiber type), X with mild singularities; f is called a Fano-Mori contraction if $-K_{X}$ is f-ample.
If $\operatorname{Pic}(X / Y)=\mathbb{Z}$ then X is called a elementary Fano-Mori contraction; if $-K_{X} \sim_{f} r L, r$ is called the nef value of f.

Classification of Fano-Mori contractions: Mori, Kawamata, Kollar, A.-Wisniewski, ... A.-Tasin (the case divisorial of nef value $>n-3$.)

Fano's Last Fano

Fano's Last Fano

Marco Andreatta - Roberto

Pignatelli
Rendiconti dell' Accademia dei Lincei - 1949
Su una particolare varietà a tre dimensioni a curve-sezioni canoniche ${ }^{1}$

Rumenia

Introduction
Classification
Fano's
Construction
${ }^{1}$ On a special 3-fold with canonical curve section

Fano's Last Fano

Fano's Last Fano

Rendiconti dell'Accademia dei Lincei - 1949
Su una particolare varietà a tre dimensioni a curve-sezioni canoniche ${ }^{1}$
Fano was 78 years old, he died three years later.

[^0]
Fano's Last Fano

Fano's Last Fano

Rumenia

Introduction
Classification

Rendiconti dell'Accademia dei Lincei - 1949
Su una particolare varietà a tre dimensioni a curve-sezioni canoniche ${ }^{1}$
Fano was 78 years old, he died three years later.
He constructs a 3-fold of the type $X_{3}^{22} \subset \mathbb{P}^{13}$ with canonical curve section, (Fano's last Fano).

[^1]
Fano's Last Fano

Fano's Last Fano

Rendiconti dell' Accademia dei Lincei - 1949

Su una particolare varietà a tre dimensioni a curve-sezioni canoniche ${ }^{1}$
Fano was 78 years old, he died three years later.
He constructs a 3-fold of the type $X_{3}^{22} \subset \mathbb{P}^{13}$ with canonical curve section, (Fano's last Fano).

The paper was almost never quoted after its publication and it has been ignored by most modern mathematicians.
L. Roth cited the paper at page 93 of his book Algebraic Threefolds (1955) saying that Fano examined a particular fourfold of the third species ...; probably Roth read the paper too quickly and did not realize that Fano was actually searching for a 3-fold and not (only) for a 4-fold.

[^2]
Fano's Last Fano

Rendiconti dell' Accademia dei Lincei - 1949

Su una particolare varietà a tre dimensioni a curve-sezioni canoniche ${ }^{1}$
Fano was 78 years old, he died three years later.
He constructs a 3-fold of the type $X_{3}^{22} \subset \mathbb{P}^{13}$ with canonical curve section, (Fano's last Fano).
The paper was almost never quoted after its publication and it has been ignored by most modern mathematicians.
L. Roth cited the paper at page 93 of his book Algebraic Threefolds (1955) saying that Fano examined a particular fourfold of the third species ...; probably Roth read the paper too quickly and did not realize that Fano was actually searching for a 3-fold and not (only) for a 4 -fold. It is not prime, i.e. it has Picard rank 2. Therefore it is not isomorphic to either the Iskovskikh or the Mukai example and it should be searched in the Mori-Mukai classification.

[^3]Fano's Last Fano

Geometria algebrica. - Su una particolare varietà a tre dimensioni a curve-sezioni canoniche. Nota (*) del Socio Gino Fano.

1. Ho incontrato recentemente una varietà a tre dimensioni a curve-sezioni canoniche, che naturalmente appartiene alla serie delle $M_{s}^{2 p-2}$ di S_{p+1} (qui $p={ }^{-12)}$), oggetto di mie ricerche in quest'ultimo periodo ${ }^{(1)}$, ma non ha finora richiamata particolare attenzione. Ne daró qui un breve cenno.

Consideriamo nello spazio $\mathrm{S}_{\text {s }}$ una rigata razionale normale R4 (non cono), che per semplicità supponiamo del tipo più generale, cioè con $\infty^{\text {r }}$ coniche direttrici irriducibili; e con essa la varietà ∞^{4} delle sue corde. Quale ne è l'immagine M_{4} nella Grassmanniana $M_{8}^{I_{8}^{4}}$ di $\mathrm{S}_{14}{ }^{(2)}$ delle rette di $\mathrm{S}_{5}{ }^{(3)}$?

Determiniamo anzitutto l'ordine di questa M_{4}, ad esempio l'ordine della superficie sua intersezione con un S_{r}, vale a dire della ∞^{2} di rette comune alla ∞^{+}suddetta e a due complessi lineari. Valendoci di due complessi costituiti risp. dalle rette incidenti a due S_{3}, questi ultimi contenuti in un $S_{4} \equiv \sigma$ e aventi perció a comune un piano π, la ∞^{2} di rette in parola si spezzerà nei due sistemi delle corde di R^{4} contenute in σ e di quelle incidenti al piano π. Le prime sono le ∞^{2} corde di una C^{4} razionale normale, e nella Grassmanniana delle rette di σ hanno per immagine una superficie φ^{9} di S, di Del Pezzo ${ }^{(4)}$. Della seconda ∞^{2} prendiamo l'intersezione con un ulteriore complesso lineare, anche con un $\mathrm{S}_{3} \equiv \tau$ direttore incontrante π in una retta. Si ha una rigata composta di una parte luogo delle corde di R^{4} contenute nello spazio $\mathrm{S}_{4} \equiv \tau \pi$ e incidenti a π, la cui imma-
(*) Presentata nella seduta dell's gennaio 1949 .
(1) Piu specialmente nella Memoria: Sulle varietà algebriche a tre dimensioni a curve-sezioni canoniche. «Mem. Acc. d'Italia», classe sc. fis., vol. VIII (1937), n. 2.

Fano's Last Fano

Marco Andreatta

- Roberto

Pignatelli

I52 Lincei - Rend. Sc. fis. mat. e nat. - Vol. VI - febbraio 1949.
gine è sezione iperpiana di altra φ^{9} di ${ }^{\text {Del Pezzo; e di una seconda parte luogo }}$ delle corde incidenti alla retta $\tau \pi$. Quest'ultima rigata è di 4° ordine, avendo la retta $\tau \pi$ come direttrice semplice, e 3 generatrici in ogni S_{4} per essa (poichè la proiezione della rigata dalla retta $\tau \pi$ ha una cubica doppia). Complessivamente la superficie immagine delle corde di R^{4} appoggiate a un piano è dunque di ordine $9+4=\mathrm{r} 3^{(5)}$; e la M_{4} immagine del sistema di tutte le corde di R^{4} è di ordine $9+13=22^{(6)}$. Le due superficie φ^{9} e F^{13}, costituenti insieme una sezione superficiale della M_{4}^{22}, hanno a comune una curva sezione iperpiana della φ^{9} (collo spazio σ), perció ellittica, di ordine 9 ; la M_{4}^{22} ha quindi superficie-sezioni di genere uno, e curve-sezioni canoniche di genere 12 (appunto $=1+3+9-1$). Le sezioni iperpiane della M_{4}^{22} sono pertanto M_{3}^{22} di S_{13}, corrispondenti al tipo generale $M_{3}^{2 p} .{ }^{2-2}$ di S_{p+3} per $p=12$, e razionali (come risulterà pure dai sistemi lineari di superficie che vi sono contenuti). Indicheremo d'ora in poi questa varietà con μ_{3}^{22}, o semplicemente μ; essa è l'immagine del sistema ∞^{3} di rette Σ intersezione della ∞^{4} delle corde di R^{4} con un complesso lineare \mathbf{K} (che si supporrà per ora del tipo piú generale, e in posizione generica rispetto a R^{4}).

Rumenia

Introduction
Classification
Fano's
Construction
R^{4} is the ruled surface image of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ embedded in \mathbb{P}^{5} by the complete linear system $|(1,2)|$. It is rational, it has degree 4 and its general hyperplane section is a smooth rational curve of degree 4.

...to prove...

Fano's Last Fano

R^{4} is the ruled surface image of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ embedded in \mathbb{P}^{5} by the complete linear system $|(1,2)|$. It is rational, it has degree 4 and its general hyperplane section is a smooth rational curve of degree 4.

The variety M_{4} is defined by Fano as the subset of the Grassmannian of lines in \mathbb{P}^{5} (embedded via the Plücker embedding as $M_{8}^{14} \subset \mathbb{P}^{14}$) given by the chords of R^{4}.
Since we are looking for a complete variety, we need to interpret the word "corde" in a broad sense, that is secant and tangent lines.

...to prove...

R^{4} is the ruled surface image of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ embedded in \mathbb{P}^{5} by the complete linear system $|(1,2)|$. It is rational, it has degree 4 and its general hyperplane section is a smooth rational curve of degree 4.

The variety M_{4} is defined by Fano as the subset of the Grassmannian of lines in $\mathbb{P}^{5}\left(\right.$ embedded via the Plücker embedding as $\left.M_{8}^{14} \subset \mathbb{P}^{14}\right)$ given by the chords of R^{4}.
Since we are looking for a complete variety, we need to interpret the word "corde" in a broad sense, that is secant and tangent lines.

Proposition

The above described $M_{4} \subset M_{8}^{14} \subset \mathbb{P}^{14}$ is an irreducible smooth variety of dimension 4 .

Computing the degree

Fano's Last Fano

Marco Andreatta

- Roberto

Pignatelli

Rumenia
Introduction
Classification
Fano's Construction

Take two special hyperplanes sections in M_{8}^{14} given by the lines intersecting two linear subspaces of dimension 3 in \mathbb{P}^{5} which are in "special position": i.e. they intersect along a plane π or equivalently that both are contained in a hyperplane $\sigma \subset \mathbb{P}^{5}$.

Computing the degree

Introduction
Classification

Take two special hyperplanes sections in M_{8}^{14} given by the lines intersecting two linear subspaces of dimension 3 in \mathbb{P}^{5} which are in "special position": i.e. they intersect along a plane π or equivalently that both are contained in a hyperplane $\sigma \subset \mathbb{P}^{5}$.
He notices that the lines in the intersection of the two hyperplanes in M_{8}^{14} are exactly the lines contained in σ and the lines intersecting π.

Computing the degree

Take two special hyperplanes sections in M_{8}^{14} given by the lines intersecting two linear subspaces of dimension 3 in \mathbb{P}^{5} which are in "special position": i.e. they intersect along a plane π or equivalently that both are contained in a hyperplane $\sigma \subset \mathbb{P}^{5}$.
He notices that the lines in the intersection of the two hyperplanes in M_{8}^{14} are exactly the lines contained in σ and the lines intersecting π.

Denote with S^{σ} the subvariety of M_{4} of the lines contained in σ and with S_{π} the subvariety of lines intersecting π.
Lemma

$$
\operatorname{deg} M_{4}=\operatorname{deg} S^{\sigma}+\operatorname{deg} S_{\pi}
$$

Degree of S^{σ}

Fano's Last Fano
Marco Andreatta - Roberto

Pignatelli

Rumenia
Introduction
Classification
Fano's
Construction
Modern Set-Up

Lemma

The surface S^{σ} is embedded in \mathbb{P}^{9} as a Del Pezzo surface of degree 9.

Degree of S^{σ}

Proof.

$R^{4} \cap \sigma=C^{4}$ is a rational normal curve of degree 4 in $\sigma=\mathbb{P}^{4}$. Lines contained in $\mathbb{P}^{4} \subset \mathbb{P}^{5}$ are mapped by the Plücker embedding into \mathbb{P}^{9}. Therefore S^{σ} is the image of $S^{2}\left(C^{4}\right)=\mathbb{P}^{2} \rightarrow \mathbb{P}^{9}$ which maps a pair (p, q) to the secant $\overline{p q}$.

Degree of S^{σ}

Lemma

The surface S^{σ} is embedded in \mathbb{P}^{9} as a Del Pezzo surface of degree 9.

Proof.

$R^{4} \cap \sigma=C^{4}$ is a rational normal curve of degree 4 in $\sigma=\mathbb{P}^{4}$. Lines contained in $\mathbb{P}^{4} \subset \mathbb{P}^{5}$ are mapped by the Plücker embedding into \mathbb{P}^{9}. Therefore S^{σ} is the image of $S^{2}\left(C^{4}\right)=\mathbb{P}^{2} \rightarrow \mathbb{P}^{9}$ which maps a pair (p, q) to the secant $\overline{p q}$.
Consider the hyperplane section given by the secants of C^{4} intersecting a fixed general plane $\pi \subset \sigma$ and its pullback $H \in\left|\mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}(d, d)\right|$ to $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Take a general point $p \in C^{4}$ not contained in π.
d is equal the number of points $q \in C^{4}$ such that $\overline{p q}$ is a secant to C^{4} intersecting π, i.e. it is equals the number of secants through a general point $p \in C^{4}$ intersecting π.
Take the projection $f_{p}: \sigma \rightarrow \mathbb{P}^{3}$. The secants through p intersecting π are projected to the points of the plane $f_{p}(\pi)$ intersecting the rational normal cubic $f_{p}\left(C^{4}\right)$, so there are exactly 3 of them: $d=3$.

Degree of S_{π} and finally of M_{4}

Fano's Last Fano

Marco Andreatta - Roberto Pignatelli

Rumenia ...
Introduction
Classification

Let $\tau \subset \mathbb{P}^{5}$ a special codimension two space that intersects π in a line and consider the special hyperplane section of S_{π} given by the lines that incide τ.
This curve has two irreducible components: the secants in S_{π} contained in the unique \mathbb{P}^{4} generated by τ and π and intersecting $\pi, C_{\pi}^{\langle\tau, \pi\rangle}$, and those intersecting the line $\tau \cap \pi, C_{\tau \cap \pi}$.

Degree of S_{π} and finally of M_{4}

Fano's Last Fano
Marco Andreatta - Roberto Pignatefii

Rumenia

Introduction
Classification
Fano's Construction

Modern Set-Up

Let $\tau \subset \mathbb{P}^{5}$ a special codimension two space that intersects π in a line and consider the special hyperplane section of S_{π} given by the lines that incide τ.
This curve has two irreducible components: the secants in S_{π} contained in the unique \mathbb{P}^{4} generated by τ and π and intersecting $\pi, C_{\pi}^{\langle\tau, \pi\rangle}$, and those intersecting the line $\tau \cap \pi, C_{\tau \cap \pi}$.

Lemma

For general choice of π, τ

$$
\operatorname{deg} S_{\pi}=\operatorname{deg} C_{\pi}^{\langle\tau, \pi\rangle}+C_{\tau \cap \pi}=9+4=13
$$

Degree of S_{π} and finally of M_{4}

Fano's Last Fano
Marco Andreatta - Roberto Pignatelli

Introduction
Classification
Fano's
Construction
Modern Set-Up

Let $\tau \subset \mathbb{P}^{5}$ a special codimension two space that intersects π in a line and consider the special hyperplane section of S_{π} given by the lines that incide τ.
This curve has two irreducible components: the secants in S_{π} contained in the unique \mathbb{P}^{4} generated by τ and π and intersecting $\pi, C_{\pi}^{\langle\tau, \pi\rangle}$, and those intersecting the line $\tau \cap \pi, C_{\tau \cap \pi}$.

Lemma

For general choice of π, τ

$$
\operatorname{deg} S_{\pi}=\operatorname{deg} C_{\pi}^{\langle\tau, \pi\rangle}+C_{\tau \cap \pi}=9+4=13
$$

Theorem

$$
\operatorname{deg} M_{4}=\operatorname{deg} S^{\sigma}+\operatorname{deg} S_{\pi}=9+13=22
$$

Fano's Last Fano

Marco Andreatta

- Roberto

Pignatelli

Rumenia ...
Introduction
Classification

Takes a hyperplane section of $S^{\sigma} \cup S_{\pi}$ to compute the sectional genus of M_{4}^{22}.
Since S^{σ} is the Del Pezzo of degree 9, its general hyperplane section is a smooth plane cubic, which has genus 1.
$C_{\pi}^{\langle\tau, \pi\rangle} \cup C_{\tau \cap \pi}$ is a reducible hyperplane section of S_{π}, formed by two smooth curves of respective genus 0 and 1 intersecting in 3 points: it follows that the general hyperplane section is a smooth curve of genus $0+1+3-1=3$.
The intersection of S^{σ} and S_{π} is a hyperplane section of S^{σ}, a curve of degree 9 . So the two curves obtained cutting S^{σ} and S_{π} with a general hyperplane intersect in 9 points.
The sectional genus of M_{4}^{22}, which is the genus of a hyperplane section of $S^{\sigma} \cup S_{\pi}$, is equal to $1+3+9-1=12$.

M_{4} is Fano

Fano's Last Fano

Takes a hyperplane section of $S^{\sigma} \cup S_{\pi}$ to compute the sectional genus of M_{4}^{22}.
Since S^{σ} is the Del Pezzo of degree 9, its general hyperplane section is a smooth plane cubic, which has genus 1 .
$C_{\pi}^{\langle\tau, \pi\rangle} \cup C_{\tau \cap \pi}$ is a reducible hyperplane section of S_{π}, formed by two smooth curves of respective genus 0 and 1 intersecting in 3 points: it follows that the general hyperplane section is a smooth curve of genus $0+1+3-1=3$.
The intersection of S^{σ} and S_{π} is a hyperplane section of S^{σ}, a curve of degree 9 . So the two curves obtained cutting S^{σ} and S_{π} with a general hyperplane intersect in 9 points.
The sectional genus of M_{4}^{22}, which is the genus of a hyperplane section of $S^{\sigma} \cup S_{\pi}$, is equal to $1+3+9-1=12$.

Proposition

A general curve section of M_{4}^{22} is therefore a non-degenerate smooth curve of genus 12 in $\mathbb{P}^{14-3=11}$ of degree 22; by Riemann-Roch this is a canonical curve, i.e. it is embedded by its complete canonical system.

Summarizing we have the following Proposition.

Proposition

The above described 4 -fold $M_{4}\left(=M_{4}^{22}\right) \subset M_{8}^{14}$ is an irreducible smooth variety of dimension 4 with canonical sectional curves.
In particular it is a Fano 4 -fold of index 2, i.e. $-K_{M_{4}}=2 H$, where H is the hyperplane bundle of the Grassmannian M_{8}^{14}.
A very general hyperplane section M_{3} of M_{4}, by Bertini theorem, is a smooth 3-fold whose curve section is canonical.
It is a smooth Fano 3-fold of degree 22 in \mathbb{P}^{13}.

85ig
 Generalized Fano's construction

Fano's Last Fano

Pignatelli

Rumenia

Introduction
Classification
Fano's
Construction
Modern Set-Up

Let S be any smooth projective variety and consider the Hilbert Scheme which parametrizes its zero dimensional subschemes of length $2, S^{[2]}$. Let $\varphi: S^{[2]} \rightarrow S^{(2)}$ be the Hillb to Chow map; it contracts a divisor $D \subset S^{[2]}$ to a surface in $S^{(2)}$.
If the irregularity of S is zero then $S^{[2]}$ is smooth (Fogarty-1968) and φ is a crepant contraction.

Generalized Fano's construction

Let S be any smooth projective variety and consider the Hilbert Scheme which parametrizes its zero dimensional subschemes of length $2, S^{[2]}$. Let $\varphi: S^{[2]} \rightarrow S^{(2)}$ be the Hillb to Chow map; it contracts a divisor $D \subset S^{[2]}$ to a surface in $S^{(2)}$.
If the irregularity of S is zero then $S^{[2]}$ is smooth (Fogarty-1968) and φ is a crepant contraction.

Choose an embedding $S \hookrightarrow \mathbb{P}^{N}$ and consider the natural map $S^{[2]} \rightarrow G(1, N)$ associating to each subscheme of length 2 of S the unique line containing its image in \mathbb{P}^{N}. Compose further with the Plücker embedding of the Grassmannian, $\operatorname{Gr}(1, N) \rightarrow \mathbb{P}^{\frac{(N+1) N}{2}-1}$.
The image is the variety of the lines that are secants or tangents to $S \subset \mathbb{P}^{N}$.

Generalized Fano's construction

Let S be any smooth projective variety and consider the Hilbert Scheme which parametrizes its zero dimensional subschemes of length $2, S^{[2]}$. Let $\varphi: S^{[2]} \rightarrow S^{(2)}$ be the Hillb to Chow map; it contracts a divisor $D \subset S^{[2]}$ to a surface in $S^{(2)}$.
If the irregularity of S is zero then $S^{[2]}$ is smooth (Fogarty-1968) and φ is a crepant contraction.

Choose an embedding $S \hookrightarrow \mathbb{P}^{N}$ and consider the natural map $S^{[2]} \rightarrow G(1, N)$ associating to each subscheme of length 2 of S the unique line containing its image in \mathbb{P}^{N}. Compose further with the Plücker embedding of the Grassmannian, $\operatorname{Gr}(1, N) \rightarrow \mathbb{P}^{\frac{(N+1) N}{2}-1}$.
The image is the variety of the lines that are secants or tangents to $S \subset \mathbb{P}^{N}$.

By the classical so called trisecant lemma, if $N \geq 4$ the total map $S^{[2]} \rightarrow \mathbb{P}^{\frac{(N+1) N}{2}-1}$ is a birational map (onto its image).

The case of $\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)^{[2]}$

Fano's Last Fano
Marco Andreatta - Roberto Pignatelli

Rumenia .

Introduction

Classification

Proposition

Let \mathcal{H} be the Hilbert Scheme $\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)^{[2]}$
a) \mathcal{H} is a smooth projective variety of dimension 4
b) $\operatorname{Pic}(\mathcal{H})=\mathbb{Z}\left(H_{1}^{[2]}\right) \oplus Z\left(H_{2}^{[2]}\right) \oplus \mathbb{Z}(B / 2)$
c) $\operatorname{Nef}(\mathcal{H})$ is the simplicial cone: $\left\langle H_{1}^{[2]}, H_{2}^{[2]}, H_{1}^{[2]}+H_{2}^{[2]}-(B / 2)\right\rangle$

The case of $\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)^{[2]}$

Fano's Last Fano

Marco Andreatta - Roberto Pignatelli

Rumenia ..

Introduction

Proposition

Let \mathcal{H} be the Hilbert Scheme $\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)^{[2]}$
a) \mathcal{H} is a smooth projective variety of dimension 4
b) $\operatorname{Pic}(\mathcal{H})=\mathbb{Z}\left(H_{1}^{[2]}\right) \oplus Z\left(H_{2}^{[2]}\right) \oplus \mathbb{Z}(B / 2)$
c) $\operatorname{Nef}(\mathcal{H})$ is the simplicial cone: $\left\langle H_{1}^{[2]}, H_{2}^{[2]}, H_{1}^{[2]}+H_{2}^{[2]}-(B / 2)\right\rangle$

The diagram represents the maps associated to the nef bundles on \mathcal{H}.

Take the embedding of $\mathbb{P}^{1} \times \mathbb{P}^{1}$, given by the complete linear system $(1,1)$, as a smooth quadric surface $Q_{2} \subset \mathbb{P}^{3}$.
Note that that the secant lines fill up the whole Grassmannian $G(1,3)$, since every line in \mathbb{P}^{3} is secant to any quadric surface. The Plücker embedding maps $G(1,3)$ into a (Klein) quadric 4 -fold Q_{4} in \mathbb{P}^{5}. Therefore we have a birational surjective map $\psi: \mathcal{H} \rightarrow Q_{4} \subset \mathbb{P}^{5}$.

Take the embedding of $\mathbb{P}^{1} \times \mathbb{P}^{1}$, given by the complete linear system $(1,1)$, as a smooth quadric surface $Q_{2} \subset \mathbb{P}^{3}$.
Note that that the secant lines fill up the whole Grassmannian $G(1,3)$, since every line in \mathbb{P}^{3} is secant to any quadric surface. The Plücker embedding maps $G(1,3)$ into a (Klein) quadric 4 -fold Q_{4} in \mathbb{P}^{5}. Therefore we have a birational surjective map $\psi: \mathcal{H} \rightarrow Q_{4} \subset \mathbb{P}^{5}$.
This is the map ψ in the above diagram; it contracts two disjoint divisors, D_{1} and D_{2}, to two conics, $C_{1}, C_{2} \subset Q_{4}$, which describe in the Grassmannian the lines in the ruling. All non zero dimensional fibers of ψ are isomorphic to \mathbb{P}^{2}, in particular they all have the same dimension. By a general result, [A-Wisniewski], $\psi: \operatorname{Hilb}^{2}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right) \rightarrow Q_{4} \subset \mathbb{P}^{5}$ is the blow up of the quadric $Q_{4} \subset \mathbb{P}^{5}$ along two disjoint smooth conics, C_{1}, C_{2}.

Fano's Construction revisited

Embed $S=\mathbb{P}^{1} \times \mathbb{P}^{1}$ by the linear system $(1,2)$ as the normal rational scroll of degree $4, R^{4} \subset \mathbb{P}^{5}$.
The birational map $\psi_{1}: \operatorname{Hilb}^{2}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right) \rightarrow M^{\prime}$ is, by construction, exactly the one in Fano's paper: $M^{\prime}=M_{4} \subset \mathbb{P}^{14}$.

Fano's Construction revisited

Embed $S=\mathbb{P}^{1} \times \mathbb{P}^{1}$ by the linear system $(1,2)$ as the normal rational scroll of degree $4, R^{4} \subset \mathbb{P}^{5}$.
The birational map $\psi_{1}: \operatorname{Hilb}^{2}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right) \rightarrow M^{\prime}$ is, by construction, exactly the one in Fano's paper: $M^{\prime}=M_{4} \subset \mathbb{P}^{14}$.
In this case the map contracts only one of the two above mentioned divisors, namely the one corresponding to the ruling in lines of R^{4}, which we denote with D_{2}; therefore M_{4} is smooth.
The other divisor $E:=D_{1}$ remains isomorphically equal in M_{4} and it can be contracted as a smooth blow-down to the curve $C_{1} \subset Q_{4} \subset \mathbb{P}^{5}$, $\nu: M_{4} \rightarrow Q_{4} . C_{1}$ is a smooth conic (not contained in any plane $\left.\mathbb{P}^{2} \subset Q_{4} \subset \mathbb{P}^{5}\right)$.

A new description

Fano's Last Fano

Marco Andreatta

- Roberto

Pignatelli

Rumenia

Introduction
Classification
Fano's
Construction
Modern Set-Up

Let $\nu: M_{4} \rightarrow Q_{4}$ be the blow-up of a smooth conic $C_{1} \subset Q_{4} \subset \mathbb{P}^{5}$ (not contained in any plane $\mathbb{P}^{2} \subset Q_{4} \subset \mathbb{P}^{5}$).

A new description

Fano's Last Fano

Marco Andreatta Roberto Pignatefii

Rumenia

Introduction
Classification
Fano's
Construction
Modern Set-Up

Let $\nu: M_{4} \rightarrow Q_{4}$ be the blow-up of a smooth conic $C_{1} \subset Q_{4} \subset \mathbb{P}^{5}$ (not contained in any plane $\left.\mathbb{P}^{2} \subset Q_{4} \subset \mathbb{P}^{5}\right)$.
Let H be the hyperplane bundle in \mathbb{P}^{5}; the formula for the canonical bundle of the blow up gives

$$
-K_{M_{4}}=\nu^{*}(4 H)-2 E=2\left(\nu^{*}(2 H)-E\right) .
$$

The line bundle $\mathcal{L}:=\nu^{*}(2 H)-E$ is very ample; it embeds M_{4} into \mathbb{P}^{14} as a Fano manifolds of index 2 and genus 12 .

A new description

Fano's Last Fano

Marco Andreatta - Roberto Pignatelli

Rumenia ..

Introduction
Classification
Fano's
Construction
Modern Set-Up

Let $\nu: M_{4} \rightarrow Q_{4}$ be the blow-up of a smooth conic $C_{1} \subset Q_{4} \subset \mathbb{P}^{5}$ (not contained in any plane $\left.\mathbb{P}^{2} \subset Q_{4} \subset \mathbb{P}^{5}\right)$.
Let H be the hyperplane bundle in \mathbb{P}^{5}; the formula for the canonical bundle of the blow up gives

$$
-K_{M_{4}}=\nu^{*}(4 H)-2 E=2\left(\nu^{*}(2 H)-E\right) .
$$

The line bundle $\mathcal{L}:=\nu^{*}(2 H)-E$ is very ample; it embeds M_{4} into \mathbb{P}^{14} as a Fano manifolds of index 2 and genus 12 .
$\operatorname{Pic}\left(M_{4}\right)=\mathbb{Z}^{2}$, that is M_{4} is not "prime".

A new description

Fano's Last Fano
Marco Andreatta - Roberto Pignatelli

Introduction
Classification
Fano's
Construction
Modern Set-Up

Let $\nu: M_{4} \rightarrow Q_{4}$ be the blow-up of a smooth conic $C_{1} \subset Q_{4} \subset \mathbb{P}^{5}$ (not contained in any plane $\left.\mathbb{P}^{2} \subset Q_{4} \subset \mathbb{P}^{5}\right)$.
Let H be the hyperplane bundle in \mathbb{P}^{5}; the formula for the canonical bundle of the blow up gives

$$
-K_{M_{4}}=\nu^{*}(4 H)-2 E=2\left(\nu^{*}(2 H)-E\right) .
$$

The line bundle $\mathcal{L}:=\nu^{*}(2 H)-E$ is very ample; it embeds M_{4} into \mathbb{P}^{14} as a Fano manifolds of index 2 and genus 12 .
$\operatorname{Pic}\left(M_{4}\right)=\mathbb{Z}^{2}$, that is M_{4} is not "prime".
The line bundle $\nu^{*}(H)-E$ is nef and it gives a map $\phi_{1}: M_{4} \rightarrow \mathbb{P}^{2}$ which is a quadric bundle fibration over \mathbb{P}^{2}.

A new description

Fano's Last Fano
Marco Andreatta - Roberto Pignatelli

Let $\nu: M_{4} \rightarrow Q_{4}$ be the blow-up of a smooth conic $C_{1} \subset Q_{4} \subset \mathbb{P}^{5}$ (not contained in any plane $\left.\mathbb{P}^{2} \subset Q_{4} \subset \mathbb{P}^{5}\right)$.
Let H be the hyperplane bundle in \mathbb{P}^{5}; the formula for the canonical bundle of the blow up gives

$$
-K_{M_{4}}=\nu^{*}(4 H)-2 E=2\left(\nu^{*}(2 H)-E\right) .
$$

The line bundle $\mathcal{L}:=\nu^{*}(2 H)-E$ is very ample; it embeds M_{4} into \mathbb{P}^{14} as a Fano manifolds of index 2 and genus 12 .
$\operatorname{Pic}\left(M_{4}\right)=\mathbb{Z}^{2}$, that is M_{4} is not "prime".
The line bundle $\nu^{*}(H)-E$ is nef and it gives a map $\phi_{1}: M_{4} \rightarrow \mathbb{P}^{2}$ which is a quadric bundle fibration over \mathbb{P}^{2}.

In the classification obtained by Mukai of Fano 4- folds of index 2 (coindex 3 in Mukai' notation) one can find M_{4}, given as the blow-up of a four dimensional quadric along a conic, as the only one of genus 12 (Example 2). The classification was based on Conjecture (ES) which was later proved by Mella.

Mori-Mukai classification

Rumenia ...

Introduction
Classification
Fano's
Construction
Modern Set-Up

A general hyperplane section in $\mathcal{L}=\nu^{*}(2 H)-E$ is a Fano 3-fold, which we denote as Fano did with M_{3}^{22}. Since, as we have seen above, \mathcal{L} embeds M_{4} as the image of Q_{4} by the rational map given by the quadric hypersurfaces through a general (=not contained in a plane) conic in Q_{4}, the hyperplane section M_{3}^{22} is obtained blowing up the conic in the intersection of Q_{4} with another quadric containg the conic.

Mori-Mukai classification

Rumenia ...
Introduction

A general hyperplane section in $\mathcal{L}=\nu^{*}(2 H)-E$ is a Fano 3-fold, which we denote as Fano did with M_{3}^{22}. Since, as we have seen above, \mathcal{L} embeds M_{4} as the image of Q_{4} by the rational map given by the quadric hypersurfaces through a general (=not contained in a plane) conic in Q_{4}, the hyperplane section M_{3}^{22} is obtained blowing up the conic in the intersection of Q_{4} with another quadric containg the conic.

This proofs that the M_{3}^{22}, Fano's last Fano, is the number 16 in the Mori-Mukai list of Fano 3-folds with Picard number 2. In fact they describe this case as the blow up along a conic of a complete intersection of two quadrics in \mathbb{P}^{5}.

[^0]: ${ }^{1}$ On a special 3 -fold with canonical curve section

[^1]: ${ }^{1}$ On a special 3 -fold with canonical curve section

[^2]: ${ }^{1}$ On a special 3-fold with canonical curve section

[^3]: ${ }^{1}$ On a special 3-fold with canonical curve section

