The problem of Malfatti two centuries of debate

Marco Andreatta
Dipartimento di Matematica di Trento, Italia

Moscow, October 2015

From Italy to Russia

Math for All Science

Gianfrancesco Malfatti
Ala and Ferrara
Italy (1731-1807)

From Italy to Russia

Math for All Science

The Problem

First Solution

A New Solution

The Solution

Remarks
Two Circles

Projective

Algebraic Geometry

Gianfrancesco Malfatti
Ala and Ferrara
Italy (1731-1807)

Viktor Zalgaller
Parfino and Saint Petersburg
Russia (1920-)

Gianfrancesco Malfatti ．．．

Gianfrancesco Malfatti was a very active intellectual in the Age of Enlightenment，promoting new ideas in different fields of mathematics including algebra，calculus，geometry and probability theory．

\% \%
 Gianfrancesco Malfatti ...

Gianfrancesco Malfatti was a very active intellectual in the Age of Enlightenment, promoting new ideas in different fields of mathematics including algebra, calculus, geometry and probability theory.
He played an important role in the creation of the Nuova Enciclopedia Italiana (1779), in the spirit of the French Encyclopédie edited by Diderot and d'Alambert.

.. and his problem

The Problem

Memoria sopra un problema stereotomico.
Memorie di Matematica e Fisica della Società Italiana, 10 p. $1^{\text {a }}$ (1803) pp. 235-244 - in 4°. 3

M E M O R I A
 SOPRA UN PROBLEMA STEREOTOMICO

Di Gianfrancesco Malfatti.

Dato un Prisma retto triangolare di qualunque materia come di marmo, cavare da esso tre Cilindri dell' altezza del Prisma e della maggior grossezza possibile correspettivamente, e in conseguenza col minor avanzo possibile di materia avuto riguardo alla voluta grossezza.
.. and his problem

Math for All Science

The title contains the word: Stereotomy, from the Greek stereo $=\sigma \tau \epsilon \rho \epsilon \sigma$, which means solid, rigid and tomy $=\tau o \mu i a$, which means cut, section.
Refers to the art of cutting solids into certain figures or sections, as arches, and the like; the art of stonecutting.

Math for All Science

The title contains the word: Stereotomy, from the Greek stereo $=\sigma \tau \epsilon \rho \epsilon O$, which means solid, rigid and tomy $=\tau o \mu i a$, which means cut, section.
Refers to the art of cutting solids into certain figures or sections, as arches, and the like; the art of stonecutting.
". . . given a triangular right prism of whatsoever material, say marble, take out from it three cylinders with the same heights of the prism but of maximum total volume, that is to say with the minimum scrap of material with respect to the volume. . ."

Malfatti solution

Math for All Science

Malfatti noted that his problem can be reduced, via a stereotomy, to a problem in plane geometry. Though not explicitly stated in the paper, the reduced problem is:
Given a triangle find three non overlapping circles inside it of total тахітит area.
The literature refers to this problem as Malfatti's marble problem.

Malfatti solution

Malfatti noted that his problem can be reduced, via a stereotomy, to a problem in plane geometry. Though not explicitly stated in the paper, the reduced problem is:
Given a triangle find three non overlapping circles inside it of total тахітит area.
The literature refers to this problem as Malfatti's marble problem.
Then, without any justification (!), Malfatti
". . . observed that the problem reduces to the inscription of three circles in a triangle in such a way that each circle touches the other two and at the same time two sides of the triangle. . ".

Malfatti solution

Math for All Science

Malfatti noted that his problem can be reduced, via a stereotomy, to a problem in plane geometry. Though not explicitly stated in the paper, the reduced problem is:
Given a triangle find three non overlapping circles inside it of total тахітит area.
The literature refers to this problem as Malfatti's marble problem.
Then, without any justification (!), Malfatti
". . . observed that the problem reduces to the inscription of three circles in a triangle in such a way that each circle touches the other two and at the same time two sides of the triangle. . ".

This geometric configuration is called the Malfatti's configuration.

Malfatti's configuration

Math for All Science

History

The Problem
First Solution

A New Solution
The Solution

Remarks
Two Circles

Projective

Algebraic
Geometry

Inscription of three circles in a triangle in such a way that each circle touches the other two and at the same time two sides of the triangle

Construction of the Malfatti's configuration

Malfatti dedicated the rest of the paper to give an algebraic construction of the configuration for any given triangle; he computed the coordinates of the centers of the circles involved, noticing that the values of the expressions can be constructed using ruler and compass.

Construction of the Malfatti's configuration

Malfatti dedicated the rest of the paper to give an algebraic construction of the configuration for any given triangle; he computed the coordinates of the centers of the circles involved, noticing that the values of the expressions can be constructed using ruler and compass.

The problem can also be found in Japanese temple geometry, where it is attributed to Chokuyen Naonobu Ajima (1732-1798).

Construction of the Malfatti's configuration

Malfatti dedicated the rest of the paper to give an algebraic construction of the configuration for any given triangle; he computed the coordinates of the centers of the circles involved, noticing that the values of the expressions can be constructed using ruler and compass.

The problem can also be found in Japanese temple geometry, where it is attributed to Chokuyen Naonobu Ajima (1732-1798).
Many famous mathematicians worked on this construction and its generalization, including Steiner, Cayley, Schellbach, and Clebsch. In 1811 Gergonne asked about the existence of a similar extremal arrangement in three dimensional space, using a tetrahedron and four spheres instead of a triangle and three circles. The extremal arrangement of spheres was constructed by Sansone in 1968.

The Malfatti's configuration does not solve the marble problem!

In 1930 Lob and Richmond observed that in an equilateral triangle the triangle's inscribed circle together with two smaller circles, each inscribed in one of the three components left uncovered by the first circle, produces greater total area than Malfatti's arrangement !

The Greedy Arrangement

We say that three (or generically n) circles in a given region form a greedy arrangement, if they are the result of the 3-step (n-step) process, where at each step one chooses the largest circle which does not overlap the previously selected circles and is contained by the given region.

The Greedy Arrangement

We say that three (or generically n) circles in a given region form a greedy arrangement, if they are the result of the 3-step (n-step) process, where at each step one chooses the largest circle which does not overlap the previously selected circles and is contained by the given region.
In 1967 Goldberg outlined a numerical argument, based on the use of a computer, showing that that the greedy arrangement of 3-circles in a triangle is always better (i.e. produces greater total area) than Malfatti's configuration.

The Greedy Arrangement

We say that three (or generically n) circles in a given region form a greedy arrangement, if they are the result of the 3 -step (n-step) process, where at each step one chooses the largest circle which does not overlap the previously selected circles and is contained by the given region.
In 1967 Goldberg outlined a numerical argument, based on the use of a computer, showing that that the greedy arrangement of 3 -circles in a triangle is always better (i.e. produces greater total area) than Malfatti's configuration.
In 1994 Los and Zalgaller settled the Malfatti's marble problem showing that the greedy arrangement is better then any other possible configuration of three non overlapping circles.

Malfatti's versus Greedy's

Math for All
Science
Marco Andreatta

History
The Problem
First Solution
A New Solution
The Solution
Remarks
Two Circles
Projective
Algebraic
Geometry

Open Problems and a Conjecture

Math for All Science

The proof requires computer aids: some mathematicians consider such type of proofs uncomplete.

Open Problems and a Conjecture

The proof requires computer aids: some mathematicians consider such type of proofs uncomplete.
In can be conjectured:
Conjecture. The greedy arrangement has the largest total area among arrangements of n non-overlapping circles in a triangle.

Greedy Algorithm

Math for All Science Marco Andreatta

History
The Problem
First Solution
A New Solution

The Solution

Remarks
Two Circles
Projective
Algebraic
Geometry

A greedy algorithm is an algorithm that always takes the best immediate, or local, solution while finding an answer. Greedy algorithms find the overall, or globally, optimal solution for some optimization problems, but may find less-than-optimal solutions for other problems.

Wreedy Algorithm

Math for All Science

A greedy algorithm is an algorithm that always takes the best immediate, or local, solution while finding an answer. Greedy algorithms find the overall, or globally, optimal solution for some optimization problems, but may find less-than-optimal solutions for other problems.

For example a greedy algorithm determines minimum number of coins to give while making change, as we usually do.
Also to find the shortest paths from a single source vertex to any other vertices in a weighted, directed graph, as our car navigator does.

Greedy Algorithm

A greedy algorithm is an algorithm that always takes the best immediate, or local, solution while finding an answer. Greedy algorithms find the overall, or globally, optimal solution for some optimization problems, but may find less-than-optimal solutions for other problems.

For example a greedy algorithm determines minimum number of coins to give while making change, as we usually do.
Also to find the shortest paths from a single source vertex to any other vertices in a weighted, directed graph, as our car navigator does.

If there is no greedy algorithm that always finds the optimal solution for a problem, one may have to search (exponentially) many possible solutions to find the optimum. Greedy algorithms are usually quicker.

Some observations

Math for All Science

As in Loss and Zalgaller we say that a system of n non-overlapping circles in a triangle is a rigid arrangement if it is not possible to continuously deform one of the circles in order to increase its radius, without moving the others and keeping all circles non-overlapping. It is evident that the solution of Malfatti' marble problem is in the class of rigid arrangements.

Some observations

As in Loss and Zalgaller we say that a system of n non-overlapping circles in a triangle is a rigid arrangement if it is not possible to continuously deform one of the circles in order to increase its radius, without moving the others and keeping all circles non-overlapping. It is evident that the solution of Malfatti' marble problem is in the class of rigid arrangements.
Zalgaller and Los showed, by an elaborate case analysis, that if $n=3$, then with the exception of the greedy triplet, all rigid configurations allow local area improvements.

Rigid Arrangements of 3-circles

Math for All Science

The Problem First Solution

Remarks
Two Circles
Projective Algebraic Geometry

Malfatti's for two circles

The Problem
First Solution
A New Solution
The Solution
Remarks
Two Circles
Projective
Algebraic
Geometry

Theorem: the greedy arrangement has the largest total area among pairs of non-overlapping circles in a triangle.

Malfatti's for two circles

First Solution

Theorem: the greedy arrangement has the largest total area among pairs of non-overlapping circles in a triangle.

The figure represents a rigid arrangement of two circles. Let r, R be the two radius; then R is uniquely determined by r, that is $R=R(r)$. We will prove that the total area function $\left(r^{2}+R^{2}(r)\right) \pi$ is convex. Therefore the area function attains its maximum at the end points of the admissible interval of r, i.e. the greedy arrangement is the best.

Malfatti's for two circles

A real valued function $f(x)$ is midpoint convex on an interval if for any two numbers x, x^{\prime} from its domain, $f\left(\frac{x+x^{\prime}}{2}\right) \leq \frac{f(x)+f\left(x^{\prime}\right)}{2}$.

Facts:

i) Any continuous, midpoint convex function is convex.
ii) If both $f(x)$ and $g(x)$ are convex functions, then $f(x)+g(x)$ is also convex.
iii) if in addition to convex $f(x)$ is also increasing, then $f(g(x))$ is convex.

Thus all we need to show is: $R(r)$ is a midpoint convex function of r.

Malfatti's for two circles

Let $r_{1}, R\left(r_{1}\right)$ and $r_{2}, R\left(r_{2}\right)$ be the radii of two pairs of circles satisfying a rigid arrangement. Denote by O_{1}, O_{1}^{\prime} and similarly by O_{2}, O_{2}^{\prime} the centers of these circles.

Clearly the following equalities hold:

$$
\left|O_{1} O_{1}^{\prime}\right|=r_{1}+R\left(r_{1}\right) \quad \text { and } \quad\left|O_{2} O_{2}^{\prime}\right|=r_{2}+R\left(r_{2}\right)
$$

Malfatti's for two circles

Let us recall the following elementary geometric exercise: in any quadrilateral the sum of the lengths of two opposite sides is at least twice the distance between the midpoints of the remaining two sides.
This follows from the following picture noticing that

$$
2|M N|=\left|A B^{\prime}\right| \leq|A D|+\left|D B^{\prime}\right|=|A D|+|B C|
$$

Malfatti’s for two circles

Consider the quadrilateral $O_{1} O_{2} O_{2}^{\prime} O_{1}^{\prime} ; O_{1} O_{1}^{\prime}$ and $O_{2} O_{2}^{\prime}$ being the opposite sides, M and N being the midpoints of the two remaining sides:

$$
|M N|<\frac{\left|O_{1} O_{1}^{\prime}\right|+\left|O_{2} O_{2}^{\prime}\right|}{2}=\frac{r_{1}+r_{2}}{2}+\frac{R\left(r_{1}\right)+R\left(r_{2}\right)}{2} .
$$

In other words the circle centered at M of radius $\frac{r_{1}+r_{2}}{2}$ and the one centered at N of radius $\frac{R\left(r_{1}\right)+R\left(r_{2}\right)}{2}$ must overlap, that is

$$
R\left(\frac{r_{1}+r_{2}}{2}\right)<\frac{R\left(r_{1}\right)+R\left(r_{2}\right)}{2}
$$

\% \% 69

 Italian Painters

Math for All Science

Marco Andreatta

The Problem

First Solution

A New Solution

The Solution

Remarks
Two Circles
The mathematical discipline called Projective Algebraic Geometry starts with the work of the italian painters which invented the Projective Space

Italian Painters

Math for All Science

Marco Andreatta

History

The Problem

First Solution

A New Solution

The Solution

Remarks
Two Circles
Projective
Algebraic
Geometry

1483 - Piero della Francesca

Italian Painters

Math for All Science

The Problem
First Solution

A New Solution

The Solution
Remarks
Two Circles
Projective Algebraic Geometry

1435 - Leon Battista Alberti

Fano Varieties

Math for All Science

Marco Andreatta

History
The Problem
First Solution
A New Solution
The Solution
Remarks
Two Circles
Projective
Algebraic Geometry

A Fano variety is a subset of a projective space defined as zero set of polynomials, which is positively curved.

Fano Varieties

Math for All Science

History
The Problem
First Solution
A New Solution
The Solution
Remarks
Two Circles
Projective Algebraic Geometry

A Fano variety is a subset of a projective space defined as zero set of polynomials, which is positively curved.
The sphere is an example of a Fano variety: $x^{2}+y^{2}+z^{2}=1$.

Fano Varieties

Fano Varieties

A Fano variety is a subset of a projective space defined as zero set of polynomials, which is positively curved.
The sphere is an example of a Fano variety: $x^{2}+y^{2}+z^{2}=1$.
According to the Minimal Model Program it should be possible to classify all (families of) Fano varieties and to group them in a sort of periodic table.
Linking shapes of the table, i.e. Fano varieties, together in the same way as the periodic table links groups of chemical elements, should provide a vast directory of all the possible shapes in the universe.

Fano Varieties

A Fano variety is a subset of a projective space defined as zero set of polynomials, which is positively curved.
The sphere is an example of a Fano variety: $x^{2}+y^{2}+z^{2}=1$.
According to the Minimal Model Program it should be possible to classify all (families of) Fano varieties and to group them in a sort of periodic table.
Linking shapes of the table, i.e. Fano varieties, together in the same way as the periodic table links groups of chemical elements, should provide a vast directory of all the possible shapes in the universe.
This will be extremely useful for mathematicians, physicists, biologists and other scientists to explore a range of areas, including computer vision, number theory, theoretical physics and synthetic biology.

Fano Varieties

Math for All
Science
Marco Andreatta

History

The Problem
First Solution
A New Solution
The Solution
Remarks
Two Circles
Projective
Algebraic Geometry

Some "stereotomies" of Fano varieties

Fano Varieties

Math for All Science

The Problem
First Solution

A New Solution
The Solution
Remarks
Two Circles
Projective
Algebraic Geometry

Some "stereotomies" of Fano varieties

Enriques and Fano

Math for All Science

Projective Algebraic Geometry of surfaces and of higher dimension varieties, the old italian school:
1871-1946 Federigo Enriques 1871-1952 Gino Fano

Shafarevich and Iskowski

Math for All Science

The Problem
First Solution
A New Solution

The Solution

Remarks

Two Circles
Projective
Algebraic Geometry

The russian school:
Igor R. Shafarevich 1923-

Mori and Mukai

Math for All Science

Marco Andreatta

The Problem

First Solution

A New Solution

The Solution

Remarks
Two Circles

The japanese school:
S. Mori 1951-

S. Mukai1953-

Encyclopaedia

Math for All Science Marco Andreatta History

The Problem
First Solution
A New Solution
The Solution
Remarks
Two Circles
Projective
Algebraic Geometry

Copytighted Matorial

Encyclopaedia of Mathematical Sciences

Volume 47
A. N. Parshin - I. R. Shafarevich(Eds.)

Algebraic Geometry

Copyrighted Material

Fano Varieties

V. A. Iskovskikh and Yu. G. Prokhorov

Tratulated from the Russian
by Yu. G. Prokhorow and S. Tregub

Contents
Introduction. 4
Chapter 1. Prefimination.
31.1. Singularitios.812. On Numerical Geometry of Cycles12.2. On Numerical Geometry of Cycles
41.4. Results on Minimal Modelo in Diment
Chupter 2 Basic Properties of Fano Varieties17
¢21. Definitions, Examples and the Simplest Properties122. Sotrie General Reaulte
23. Fxistenes of Good Divisons in the Fundumental Lineur Symeti
42.4. Bawe Points in the Fundamental Linear System23
34
Chapter 3. Del Pezzo Varieties and Fano Varieties of Large Index.47
83.1. On Some Preliminary Results of Fujita50
53
612. Del Peroo Varieties. Definition and Preliminary Results
512. Del Pezmo Varieties. Definition and Prelimitury Aesults.
and Beginuing of the Proof 54
33.4. Del Pezzo Varieties with Pleard Number $\rho=1$ 57
53.5. Del Pezzo Varieties with Picard Number 62

