Esame scritto di Geometria 2

UNIVERSITÀ DEGLI STUDI DI TRENTO
CORSO DI LAUREA IN MATEMATICA
A.A. 2014/2015
Gennaio 2016

Esercizio 1

Sia \mathbb{A}^4 lo spazio affine reale a quattro dimensioni con un sistema di coordinate cartesiane (x, y, z, w) di centro O. Si considerino i due sottospazi affini definiti dalle relazioni

$$S_1: 6x + (2h+2)y + 4z + (2h)w = h - h^2$$

$$S_2: (h+1)x + 3y + 2z + hw = -1$$

dove h è un parametro reale.

- Ricavare i valori di h per cui si ha che S₁ e S₂ si intersecano in un sottospazio affine di dimensione 2. In quanto segue sia Th:= S₁ ∩ S₂;
- Ricavare una rappresentazione parametrica per T_h per h = -1 e per h = 2;
- Scrivere l'equazione cartesiana di un sottopazio affine di \mathbb{A}^4 di dimensione 2 che interseca T_{-1} esattamente in P = (0,0,0,1).

Esercizio 2

Sia \mathbb{P}^2 il piano proiettivo reale e sia $[x_0, x_1, x_2]$ un sistema di coordinate proiettive. Si consideri, al variare del parametro $k \in \mathbb{R}$, la conica di equazione

$$\mathscr{C}_k : kx_1^2 + 2x_1x_2 + (2-2k)x_0x_2 + (2-k)x_2^2 = 0.$$

- Si dica per quali valori di k, \mathcal{C}_k è degenere e si classifichi \mathcal{C}_k per questi valori;
- Si scriva la forma canonica della conica \mathscr{C}_{-1} e una proiettività che la riduce nella sua forma canonica.

Esercizio 3

Si consideri \mathbb{R}^2 munito della topologia euclidea e i suoi due sottospazi

$$D_1 = \{(x,y) \in \mathbb{R}^2 \mid (x-2)^2 + y^2 \le 1\}$$
 $D_2 = \{(x,y) \in \mathbb{R}^2 \mid (x+2)^2 + y^2 \le 1\}.$

Sia $f: D_2 \to D_1$ la funzione continua tale che f((x,y)) = (x+4,y) e siano $P_1 = (2,0)$ e $P_2 = (-2,0)$. Si consideri la relazione di equivalenza \sim definita su $X = (D_1 \cup D_2)$ per cui vale

$$p \sim q \Longleftrightarrow \left\{ egin{aligned} p = q & ext{oppure} \\ p \in D_2 \setminus \{P_2\} & ext{e } q = f(p) & ext{oppure} \\ q \in D_2 \setminus \{P_2\} & ext{e } p = f(q). \end{aligned} \right.$$

Si consideri $Y := X / \sim$ munito della topologia quoziente e la relativa proiezione π da X a Y.

- Si dica se Y è compatto, connesso o T_1 ;
- Detto $W := \{(x,0) \in X \mid x \ge 0\}$, ricavare la chiusura di $\pi(W)$;
- Dimostrare che *Y* è connesso per archi.

Esercizio 4

Si consideri la sfera S^2 di raggio unitario in \mathbb{R}^3 e si consideri su di essa la topologia euclidea.

- Sia $f: S^2 \to \mathbb{R}^3$ una qualsiasi applicazione continua. Dimostrare che $f(S^2)$ è un chiuso limitato e connesso di \mathbb{R}^3 . Dimostrare che per ogni compatto K di \mathbb{R}^3 si ha che $f^{-1}(K)$ è un compatto di S^2 o l'insieme vuoto;
- Si descriva, se esiste, un aperto denso A di S^2 per cui $S^2 \setminus A$ è composto da infiniti punti. Giustificare la risposta;
- Indicando con τ la topologia cofinita su \mathbb{R} , sia $g: S^2 \to (\mathbb{R}, \tau)$ l'applicazione che associa a $(x, y, z) \in S^2$ il numero reale x. Dire se g è continua e se $g(S^2)$ è connesso per archi.

Soluzione dell'esercizio 1

Per ricavare i valori di *h* per cui i due sottospazi si intersecano in un sottospazio di dimensione 2 dobbiamo chiedere che il sistema

$$\begin{cases} 6x + (2h+2)y + 4z + (2h)w = h - h^2\\ (h+1)x + 3y + 2z + hw = -1 \end{cases}$$

abbia prima di tutto soluzione. Scriviamolo in forma matriciale $A\underline{x} = \underline{b}$ ponendo

$$A = \left[\begin{array}{ccc} 6 & (2h+2) & 4 & (2h) \\ (h+1) & 3 & 2 & (h) \end{array} \right] \quad \underline{b} = \left[\begin{array}{cc} h-h^2 \\ -1 \end{array} \right].$$

Ricaviamo il rango di A e di $[A|\underline{b}]$. La matrice A ha rango almeno uno perchè l'elemento nella prima riga che sta nella terza colonna è diverso da 0. Orlando la matrice [4] in tutti i modi possibili e calcolando i determinanti delle matrici due per due che otteniamo i seguenti valori

$$8-4h, 4h-8 e 0.$$

$$[A|\underline{b}] = A = \begin{bmatrix} 6 & 6 & 4 & 4 & -2 \\ 3 & 3 & 2 & 2 & -1 \end{bmatrix}$$

si vede facilmente che il rango è 1. Essendo Rk(A) = Rk([A|b]) per ogni valore di h abbiamo che T_h è sempre non vuoto in quanto il sistema ha sempre soluzioni. I valori di h per cui T_h ha dimensione 2 sono quelli per cui Rk(A) = 2 cioè $h \neq 2$.

Per h=2 abbiamo che T_2 ha dimensione 3: per questo valore di h si ha quindi $S_1=S_2=T_2$. Siccome, per h=2, un'equazione cartesiana di S_2 è

$$3x + 3y + 2z + 2w = -1$$

abbiamo ad esempio

$$T_2: \begin{cases} x = & a \\ y = & b \\ z = & c \\ w = -1 & -(3/2)a - (3/2)b - c \end{cases}$$

usando x, y, z come parametri. Poniamo ora h = -1. Andando a sostituire avremo

$$[A|\underline{b}] = \left[\begin{array}{ccc|ccc|c} 6 & 0 & 4 & -2 & -2 \\ 0 & 3 & 2 & -1 & -1 \end{array} \right]$$

che si può ridurre (togliendo alla prima colonna due volte la seconda e dividendo poi la prima colonna per 6) alla matrice

$$\left[\begin{array}{ccc|ccc|c}
1 & -1 & 0 & 0 & 0 \\
0 & 3 & 2 & -1 & -1
\end{array}\right]$$

da cui ricaviamo delle equazioni semplificate

$$x - y = 3y + 2z - w + 1 = 0$$

e la forma parametrica

$$T_{-1}: \begin{cases} x = a \\ y = a \\ z = b \\ w = 3a + 2b + 1 \end{cases}$$

Un piano che interseca T_{-1} esattamente in un punto, per Grasmann, deve avere come giacitura uno spazio vettoriale che è in somma diretta con la giacitura V_{-1} di T_{-1} . Questa è generata dai vettori $v_1 = (1,1,0,3)$ e $v_2 = (0,0,1,2)$. Due vettori che generano uno spazio vettoriale V di dimensione 2 che è in somma diretta con V_{-1} si possono ottenere dal sistema

$$\begin{cases} x+y+3w=0\\ z+2w=0 \end{cases}$$

la cui soluzione generale è (-y-3w,y,-2w,w). Una base per V è data da $v_3=(-1,1,0,0)$ e $v_4=(-3,0,-2,1)$. Un piano che soddisfa le richieste è quindi quello passante per P avente giacitura V:

$$T_{-1}: \begin{cases} x = -a - 3b \\ y = a \\ z = -2b \\ w = b + 1 \end{cases}$$

da cui si ottiene, esplicitando b = w - 1 e a = y,

$$x+y+3w-3=z+2w-2=0$$
.

Soluzione dell'esercizio 2

La matrice della conica è

$$A_k = \begin{bmatrix} 0 & 0 & 1-k \\ 0 & k & 1 \\ 1-k & 1 & 2-k \end{bmatrix}$$

il cui determinante è

$$Det(A_k) = -k(k-1)^2.$$

La conica è quindi degenere se e solo se $k \in \{0,1\}$. Per questi due valori la conica si scrive come

$$\mathscr{C}_0: 2x_1x_2 + 2x_0x_2 + 2x_2^2 = 0$$
 $\mathscr{C}_1: x_1^2 + 2x_1x_2 + x_2^2 = 0$

e quindi, la prima si decompone come l'unione di due rette incidenti (e non coincidenti) di \mathbb{P}^2 (per la precisione $x_0+x_1+x_2=0$ e $x_2=0$) mentre la seconda è doppiamente degenere: si tratta della retta $x_1+x_2=0$ contata due volte. Nel primo caso la conica ha equazione canonica $X_0^2-X_1^2=0$ mentre nel secondo questa è $X_0^2=0$.

Poniamo ora k=-1. La conica ha quindi equazione $\mathscr{C}_{-1}: -x_1^2+2x_1x_2+4x_0x_2+3x_2^2=0$. Completiamo i quadrati

$$-x_1^2 + 2x_1x_2 + 4x_0x_2 + 3x_2^2 = -x_1^2 + 2x_1x_2 - \underline{x_2^2} + \underline{x_2^2} + 4x_0x_2 + 3x_2^2 =$$

$$= -(x_1 - x_2)^2 + 2x_0(2x_2) + 4x_2^2 = -(x_1 - x_2)^2 + 2x_0(2x_2) + (2x_2)^2 + \underline{x_0^2} - \underline{x_0^2} =$$

$$= -(x_1 - x_2)^2 + (x_0 + 2x_2)^2 - x_0^2.$$

La forma canonica è quindi

$$X_0^2 + X_1^2 - X_2^2 = 0$$

e la conica è non degenere a punti reali. Una proiettività che riduce a forma canonica è

$$\begin{cases} X_0 = x_1 - x_2 \\ X_1 = x_0 \\ X_2 = x_0 + 2x_2 \end{cases}$$

Soluzione dell'esercizio 3

Siccome X è unione di due chiusi di \mathbb{R}^2 è chiuso ed essendo pure limitato è anche compatto. Di conseguenza, $\pi(X) = Y$ è compatto. Non possiamo fare lo stesso ragionamento per mostrare che Y è connesso perchè X non è connesso... Però D_1 e D_2 lo sono quindi $\pi(D_1)$ e $\pi(D_2)$ sono connessi e siccome hanno dei punti in comune (tutti e soli i punti di $\pi(D_1 \setminus P_1)$) avremo che $Y = \pi(D_1) \cup \pi(D_2)$ è connesso.

Siano $Q_i := [P_i]$ con i = 1, 2. Sia V_i un intorno aperto di Q_i . Allora $\pi^{-1}(V_i)$ è un intorno aperto di P_i per definizione di topologia quoziente e poichè $Q_i = [P_i] = \{P_i\}$. Quindi esiste un ε tale che $B_{\varepsilon}(P_i) \subset U$. Per semplicità, supponiamo di analizzare il caso i = 2 (l'altro è identico). Siccome U deve essere saturo allora $f(B_{\varepsilon}(P_2) \setminus \{P_2\}) = B_{\varepsilon}(P_1) \setminus \{P_1\}$) deve essere contenuto in U. Abbiamo mostrato che ogni aperto saturo che contiene P_2 deve contenere anche un insieme del tipo

$$B_{\varepsilon}(P_2) \cup (B_{\varepsilon}(P_1) \setminus \{P_1\}).$$

Similmente ogni aperto saturo contenente P_1 deve contenere un insieme del tipo

$$B_{\varepsilon}(P_1) \cup (B_{\varepsilon}(P_2) \setminus \{P_2\}).$$

In particolare ogni intorno aperto di Q_1 deve intersecare ogni intorno aperto di Q_2 e viceversa.

Se
$$Q \in Y \setminus \{Q_1, Q_2\}$$
 si ha $Q = \{(a,b), (a+4,b)\}$ e quindi

$$\pi^{-1}(\{Q\}^C) = D_1 \setminus \{(a+4,b)\} \cup D_2 \setminus \{(a,b)\}$$

che è aperto quindi $\{Q\}$ è chiuso. Se invece $Q=Q_1$ (o $Q=Q_2$) si ha

$$\pi^{-1}(\{Q_1\}^C) = D_1 \setminus \{P_1\} \cup D_2$$

$$\pi^{-1}(\{Q_2\}^C) = D_2 \setminus \{P_2\} \cup D_1$$

che sono entrambi aperti: si ha quindi che $X

è <math>T_1$.

Dimostriamo ora che la chiusura di W coincide con $W \cup \{Q_2\}$. Abbiamo già visto che Q_2 deve appartenere alla chiusura (poichè ogni suo intorno aperto interseca $\pi(W)$)quindi basta mostrare che tutti gli altri punti non vi appartengono. Sia quindi $Q \in Y \setminus (W \cup \{P_2\})$. Per costruzione si deve avere Q = [(x,y)] con $y \neq 0$ altrimenti Q apparterrebbe a W o sarebbe uguale a Q_2 . Possiamo supporre x < 0 per semplicità. In tal caso abbiamo che l'insieme

$$B_{y/2}((x,y)) \cup B_{y/2}((x+4,y))$$

è un aperto saturo di X disgiunto dalla controimmagine di $W \cup \{Q_2\}$: questo vuol dire che la sua immagine è un aperto contenente Q disgiunto da $W \cup \{Q_2\}$. Si ha quindi $Q \notin \overline{W}$ e $\overline{W} = W \cup \{Q_2\}$.

Per dimostrare la connessione per archi ci basta esibire un arco continuo tra un punto qualsiasi di Y e un punto fissato, ad esempio Q=[(2,1)]. Sia quindi P un punto di Y diverso da Q. Supponiamo prima che $P \neq P_2$. In tal caso P contiene un punto appartenente a D_1 che sarà del tipo (x,y). Se consideriamo la parametrizzazione α del segmento che unisce (x,y) a (2,1) questa è una funzione continua con immagine contenuta in D_2 . Allora $\pi \circ \alpha$ è un arco che collega P a Q. Se invece $P = P_2$, siccome sappiamo che $Q = \{(2,1), (-2,1)\}$ possiamo prendere α che parametrizza il segmento tra (-2,1) e (-2,0). $\pi \circ \alpha$ è anche in questo caso l'arco cercato.

Soluzione dell'esercizio 4

Per il primo punto basta osservare che S^2 è compatto in quanto chiuso e limitato (con la topologia euclidea!) per il teorema di Heine-Borel. Essendo f continua, $f(S^2)$ sarà compatto e quindi chiuso

e limitato. Essendo S^2 connesso, si ha che $f(S^2)$ deve anche essere connesso. Se K è un compatto di \mathbb{R}^3 , è chiuso (o per Heine-Borel o perchè \mathbb{R}^3 è di Hausdorff) e, essendo f continua, si ha che $f^{-1}(K)$ è un chiuso. Ma S^2 è compatto quindi $f^{-1}(K)$ è un compatto in quanto chiuso in un compatto.

Si consideri il sottoinsieme di \mathbb{R}^3 formato dai punti con ascissa uguale a 0: il piano Π di equazione x=0. Π è un chiuso in \mathbb{R}^3 quindi $C=S^2\cap\Pi$ è un chiuso. Per costruzione è chiaro che la chiusura dell'aperto $A=S^2\setminus C$ deve contenere tutti i punti di C:A è uno degli insiemi cercati.

Sia C un chiuso di (\mathbb{R}, τ) . Allora C è un insieme finito di punti x_1, \ldots, x_n . Di conseguenza

$$g^{-1}(C) = g^{-1}(x_1) \cup \cdots \cup g^{-1}(x_n).$$

Se $|x_i| > 1$ si ha $g^{-1}(x_i) = \emptyset$ quindi possiamo supporre $|x_i| \le 1$. In tal caso $g^{-1}(x_i)$ è o ridotto a un solo punto (se $x_i = \pm 1$) o è una circonferenza sul piano $x = x_i$ (più precisamente è la circonferenza di intersezione tra S^2 e il piano $x = x_i$). In entrambi i casi è un chiuso in S^2 quindi $g^{-1}(C)$ è unione di un numero finito di chiusi e quindi è chiuso: g è continua. Essendo g continua abbiamo che $g(S^2)$ è connesso per archi in quanto S^2 lo è.